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A B S T R A C T   

Arterial Spin Labelling MRI is a noninvasive quantitative imaging technique for measuring Cerebral Blood Flow 
(CBF) that plays a vital role in diagnosing different neurological disorders. Limited signal-to-noise ratio and 
significant partial volume effect due to the low resolution of ASL images make an accurate CBF estimation 
difficult. This work proposes a deep learning based ASL enhancement algorithm (Deep-ASL ENHANCE), based on 
the principle of single image super resolution and multi-loss joint strategy with two reconstruction modules and 
one weighted fusion module that employ residual dense block as the basic building block. Lack of huge amount of 
low quality and high quality images for training this deep learning network, is addressed by generating simulated 
ASL images from structural images of ADNI2. The experiment is conducted and results are evaluated on a 
simulated dataset in terms of different metrics such as RMSE, PSNR and SSIM. The model is also validated using 
clinical ASL images with the help of two independent radiologists and the results are compared using Visual 
Quality Score (VQS). The deep learning model trained by using simulated ASL images shows more promising 
results on clinical ASL data. The effectiveness of using Deep-ASL ENHANCE as a preprocessing step to the partial 
volume correction technique with Linear Regression algorithm (LR) has been investigated using RMSE score and 
it is found that CBF quantification accuracy is improved compared to the standalone LR algorithm.   

1. Introduction 

Hundreds of millions of people worldwide are affected by neuro-
logical disorders which are one of the most leading causes of morbidity 
and mortality. Among the different medical imaging modalities, Mag-
netic Resonance Imaging (MRI) has become a more promising approach 
for the diagnosis of different neurological disorders. Rapid technological 
advancements in modern medical imaging provide techniques for 
quantitative imaging for functional tissue characteristics such as perfu-
sion and diffusion which enables better diagnosis and treatment plan-
ning. Perfusion is an important parameter, quantified by the amount of 
blood delivered to the tissue per unit time, per unit volume or mass of 
tissue [31,14]. Since it is closely related to the delivery of oxygen and 

nutrients to the tissue, abnormal changes in perfusion can be used as an 
indicator for various disorders. There exist several MRI based perfusion 
imaging techniques such as Dynamic Contrast Enhancement (DCE) [13], 
Dynamic Susceptibility Contrast (DSC) [38,55], Arterial Spin Labeling 
(ASL) [14,69,3] and Intra Voxel Incoherent Motion (IVIM) [7] to 
quantitatively assess the different hemodynamic parameters related to 
perfusion. In the case of brain, Cerebral Blood Flow (CBF) is a critical 
perfusion parameter that defines volume of blood flowing through a 
specific region of brain tissue per unit time. It plays a vital role as a 
biomarker for various neurodegenerative diseases and tumor. DCE and 
DSC are mainly used to measure cerebral perfusion that uses intravenous 
administration of exogenous tracer like gadolinium based contrast agent 
which causes side effects including the potential risk of conditions like 
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nephrogenic systemic fibrosis [67]. ASL is a non-invasive technique that 
completely eliminates the use of contrasts media and allows the possi-
bility of repetitive follow-up, especially in the case of pediatric and 
pregnancy cases. Most of the ASL research is carried out in the brain 
region [15,21,61,71], but recent research [2,45,48] show that ASL is a 
promising approach for perfusion quantification in abdominal organs 
also. The working principle of ASL mainly focuses on two types of im-
ages, namely ‘Label’ and ‘Control’. A Label image is generated through 
Arterial Spin Labeling which magnetically inverts the arterial blood 
water molecules by applying radio frequency inversion pulses in the 
neck region. The label image is acquired after a time delay which is the 
time taken by the labeled proton to reach the brain, called Arterial 
Trasnsit Time (ATT) [3,28]. Control image is acquired without inverting 
inflowing blood water magnetization. The difference between the 
labeled and control images is called Perfusion Weighted Image (PWI) 
and it represents the ATT weighted signal that can be converted into 
absolute quantitative CBF in ml/100g/min, using a kinetic model [11]. 
Accuracy and quality of CBF quantification are a promising criterion for 
decision making in medical diagnosis and therapeutic management of 
aging and various other neurological disorders. But poor Signal to Noise 
Ratio (SNR), low resolution and prolonged scanning time are the chal-
lenging problems that affect the CBF quantification procedure signifi-
cantly, causing the barrier for a widespread use of ASL imaging 
clinically. 

Gray Matter (GM) CBF is of primary interest in disorders such as 
alzheimer’s and parkinson’s diseases as well as functional studies 
related to the brain in which the abnormal GM CBF is used as a 
biomarker for clinical diagnosis. Studies related to White Matter (WM) 
perfusion are rare due to poor SNR as blood may take longer transit time 
to reach the white matter and shorter T1 relaxation time of white matter 
[3,18]. For healthy GM, perfusion value of blood is approximately 60 mL 
(100 gm)− 1min− 1 and WM perfusion is only 1/3 of this value [52]. Most 
of the ASL-MRI studies focus to analyze GM perfusion using structural 
MRI or the Region of Interest (ROI) analysis [42,65]. But it is very 
difficult to separate the perfusion signals associated with the three types 
of brain tissues such as GM, WM and Cerebrospinal Fluid (CSF) due to 
the low resolution of ASL image. In such cases the voxel intensity de-
pends not only on the imaging sequence and tissue properties, but also 
on the proportions of each tissue type present in that voxel, called Partial 
Volume (PV) effects [4]. As a result, the measured signal from each voxel 
will be a weighted average combination of tissue types present in it. PV 
effects can also be caused by the blurring of images due to the point 
spread function (PSF) [49]. PSF is consequences of image formation and 
varies with the method of acquisition. 

To give a better approximation of GM CBF quantity, PV effects are to 
be corrected or to be minimized. PV effects will be minimum for high 
resolution ASL data. However, the clinical image acquisition process 
limits the SNR in high resolution images due to the hardware and 
experimental design constraints, computational burden and cost effec-
tiveness. The high resolution ASL image acquisition, on the other hand, 
results in a low SNR. To improve the SNR, perfusion images are typically 
acquired by averaging a large number of pairwise subtractions of label 
and control images which results in prolonged scanning time. This 
causes embarrassment to the patient and creates motion artifacts in ASL 
images which in turn lead to further quantification errors. Thus 
improving the resolution of ASL image happens at the cost of reducing 
the SNR or long acquisition time and their cumulative effects. In the 
currently available clinical image acquisition systems, obtaining high 
resolution and high SNR image is practically impossible. Effectively 
incorporating the appropriate post processing techniques to enhance 
ASL images to correct PV effects is a promising approach to tackle this 
problem. The majority of the research work reported on this issue [1,4, 
12,40,49,52] concentrated on a voxelwise correction of PV effects as a 
post processing technique to separate GM and WM CBF, based on the PV 
estimates of GM and WM. The PV estimates of GM, WM and CSF are 
determined from the high resolution structural MRI, using 

segmentation, registration and resampling techniques. Segmentation is 
carried out to separate the brain volume into GM, WM and CSF com-
ponents in terms of the respective PV estimates. Since the target space of 
the PV correction is ASL space, image registration and resampling 
techniques are to be used to convert the high resolution PV estimates 
thus obtained to a low resolution space or ASL space. Suitable PV 
correction algorithms are applied to ASL images using the PV estimates 
in ASL space. Any error in the calculation of PV estimates will deterio-
rate the quantification accuracy of PV correction techniques. Linear 
Regression (LR) [4] is a standard algorithm used for PV correction which 
is recommended for highly time critical applications. LR is one of the 
most popular algorithms due to its simplicity, fast execution and less 
sensitivity to error in PV estimates [4,12,77]. However, the LR method 
suffers from an inherent smoothing effect resulting from the assumption 
that tissue magnetization and perfusion are constant over a region, 
called regression kernel. This smoothing effect causes blurring and loss 
of edge information on the GM and WM tissue boundary, leading to 
significant quantification errors [4]. Since ASL data inherently suffers 
from low SNR and blurring due to low resolution, performance of the LR 
method will be further affected. 

Recently, super resolution of ASL images to reduce the PV effects 
using traditional or deep learning based methods without using explicit 
PV estimates are being explored [46,48]. Training a deep learning 
network for accurate results, huge volume of low-resolution and 
high-resolution ASL images are essential, which is not clinically feasible. 
This approach also suffers from an inaccuracy in estimating GM CBF, 
which is derived directly from a CBF map and is the primary factor 
influencing most of the clinical diagnosis. This leads to the necessity of a 
technique that enhances ASL image prior to the voxelwise correction for 
the accurate quantification of GM CBF. This image enhancement helps to 
improve the SNR and contrast of edges of ASL image which will lead to 
the reduction in the blurring effect of LR algorithm, especially in the 
vicinity of GM and WM boundaries. Traditional enhancement methods 
have many disadvantages, including high computational costs due to the 
use of conventional optimization methods and the need of manual 
parameter settings to improve the performance [44,63]. Deep learning 
techniques have the ability to overcome these drawbacks by using 
deeper architecture to automatically learn and find more suitable fea-
tures of the image rather than the manual setting of parameters. 
Emerging developments in the field of deep learning motivated the re-
searchers to build a deep learning-based strategy for biomedical 
denoising and super-resolution applications [53,63]. For Single Image 
Super Resolution (SISR) [16], the low resolution image data is consid-
ered as the down sampled version of the corresponding high resolution 
image with or without noise. By automatically extracting a collection of 
features from the set of prior examples used for training, a deep network 
tries to learn a mapping between low resolution and ground truth high 
resolution data. Convolution Neural Network (CNN) is the most typical 
and popular deep learning network that directly learn an end to end 
mapping between low resolution and high resolution images which is 
successfully applied in many recent research [16,33,53]. The 
non-linearity feature of the deep network can be increased by adding 
more CNN layers with proper activation function. This in turn helps to 
extract more hierarchical features and enables the network to learn a 
function between low resolution and high resolution images. But, deep 
neural network causes vanishing gradient problem [25] which makes it 
difficult to learn and change the parameters of the previous layers of the 
network. As a result, the performance gets saturated or even starts 
degrading rapidly. Many of the researchers have discussed this issue and 
suggested various architectures including ResNet [25,26,34,41], Dens-
net [29] and Inception [58,59]. Instead of using cumbersome per-layer 
network piling, these networks use a block wise structure to make 
network generation efficient and generalizable [79]. He et al. [25] 
proposed Residual block in ResNet architecture which uses identity 
shortcut connection or skip connection to improve the network perfor-
mance by local residual learning [29]. suggested a densnet architecture 
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consisting of a series of dense blocks which directly links all layers with 
each other. Concatenating feature maps from various layers will retain 
the features, along with increasing variance of output and facilitating 
the reuse of features [75]. suggested Residual Dense Block (RDB) con-
sisting of dense linked layers with local residual learning. In addition to 
addressing the vanishing gradient problem, the RDB network ensures 
maximum data flow between network layers and reuse of features. There 
exist different variants of RDB in literature based on the variants in re-
sidual block and dense block [41,54,64]. The block diagram of a typical 
Residual Block(RB) [41], Dense Block (DB) [64] and RDB [75] are 
shown in Fig. 1. In this work, a deep learning based ASL image 
enhancement technique based on the principle of SISR is proposed using 
RDB as the basic building block by generating an adequate amount of 
simulated images and fine tuning the parameters to improve the quality 
of output image. 

2. Related works 

ASL [69] is a totally non-invasive MRI technique which has product 
status with all major MR vendors and is capable of creating a dramatic 
revolution in the clinical diagnosis and radiology-based therapy. Due to 
a variety of technological factors, the current state of ASL procedures is 
susceptible to a number of limitations that impair image quality and 
patient satisfaction. Many researchers have attempted to improve the 
quality of ASL images by removing noise and artifacts using a variety of 
post-processing techniques, such as motion correction [5], physiological 
noise correction [6], spatial noise reduction [60,68], temporal noise 
reduction [51] and spatio-temporal noise reduction [10,20,56,80]. 
Apart from the aforementioned artifacts, the disruption that obscures 
the underlying information known as outliers can also degrade the 
overall quality of the image, which is addressed by several recent 
research works [39,57]. The majority of these methods are based on 
implicit or explicit models that are data specific and need not be 

accurate due to patient dependence. Recently, deep learning based 
denoising algorithms have been found as promising approaches to 
improve the signal quality in ASL images. Several deep learning based 
models [22,35,50,66,72] were suggested to reconstruct ASL images 
using minimum number of label-control pairs, at the expense of huge 
training datasets and scanning time, found to yield accurate results 
compared to traditional models. 

Studies proved that, in addition to SNR, PV effects in ASL images can 
also lead to significant errors in the quantification of CBF values that can 
be tackled by various PV correction algorithms. The first work on single 
Post Labeling Delay (PLD) ASL [4] used a regression technique with the 
assumption that for a given tissue type within a given voxel, CBF is 
identical to that of the nearby voxels within a predefined kernel. Despite 
the fact that this is a promising strategy for obtaining the exact voxel 
wise CBF contribution from the GM and WM, the regression kernel 
makes GM-WM tissue boundaries smooth, which complicates the 
detection of local changes in CBF values. Many groups focused to 
address the smoothing effect problem by different approaches like 
bayesian [12], robust regression techniques using modified least trim-
med square method [40] and kernel based method [49]. The Bayesian 
method, which is more complex and slower than the LR method, con-
verges after a large number of iterations. A trimming parameter that is 
unique to each input determines the accuracy of the modified least 
trimmed square approach. The kernel method transforms 2D kernel to 
3D kernel which involves more complex processing than LR method. 

Most of the PVE correction techniques reported so far rely on the 
partial volume estimates derived from high resolution structural MRI, 
which in turn depend on the reliable segmentation, registration and 
resampling techniques [49]. Registration of high-resolution anatomical 
data to perfusion space is difficult due to the low contrast and spatial 
detail of the low-resolution perfusion space. As a result, an error in this 
procedure will lead to inaccurate PV estimate and a reduction in PV 
correction accuracy. Furthermore, there is still no consensus on how the 

Fig. 1. Network Structure of a typical (a) Residual block [41], (b) Dense block [64] (c) Residual Dense Block [75].  

Fig. 2. Overall Architecture of the Proposed Method.  
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segmentation should be resampled from anatomical to perfusion space 
[52]. proposed that, generating PV estimates directly at perfusion space 
removes the requirement of resampling techniques and applied PVE 
correction using regression techniques based on the PV fraction ob-
tained using a Look Locker Saturation Recovery EPI sequence (LL-EPI) 
[1]. attempted to determine PV estimates from low resolution ASL data 
using the QUASAR sequence (Quantitative STAR Labeling of Arterial 
Region), which was not clinically feasible. Later, attempts were made to 
use super resolution as a post-processing approach to improve ASL 
image resolution to reduce PV effects. A nonlocal patch based super 
resolution technique on Pseudo Continuous ASL (PCASL) images was 
proposed [46], where the nonlinear weights were determined from 
non-local image patches of both structural and ASL images, but it failed 
in detecting local image variations. This technique was limited by the 
denoising capability due to the lack of mean signal consistency and low 
SNR of ASL MRI. Later, deep learning based solutions were developed 
for superresolution of ASL images and [78] pioneered in this, proposing 
a deep learning based method for superresolution of ASL images using 
clinical data. However, the requirement for a significant number of low 
resolution and high resolution clinical ASL images to train the deep 
learning model made it impractical. An analytical study [77] revealed 
that the LR approach is less sensitive to PV estimation errors, and it has 
already been proven as useful in time-critical applications. Hence, the 
technique that mitigates the drawbacks of the LR algorithm can be a 
more promising approach in clinical diagnosis. Motivated by this fact, 
the super resolution image enhancement principle [73] is applied to an 
ASL image to enhance its quality and further improve PV correction by 

incorporating deep learning techniques. 

3. Proposed methodology 

Clinical ASL images suffer from low SNR, low resolution and blurring 
effects which degrades the image quality, resulting in PV effects and CBF 
quantification errors. Hence it becomes inevitable to improve the image 
quality and apply the PV correction techniques to enhance CBF quan-
tification accuracy. This work proposes a deep learning architecture 
based on the principle of SISR which provides automated ASL image 
quality enhancement from a clinical perspective, as shown in Fig. 2. 

The performance of all deep learning based architectures depends on 
the number of inputs used for training the network. Biomedical image 
processing using deep learning network fails to give accurate results due 
to the unavailability of sufficient clinical input images. Hence this 
method focuses on generating high quality ASL image using a deep 
learning network by training the network using the simulated low 
quality ASL image from the available or acquired structural MRI by 
Simulated Training Data Generator (STDG) block and testing it using 
clinical ASL images. STDG consists of four phases such as segmentation, 
thresholding, generation of high Quality CBF map and degrading to 
generate low quality ASL image as shown in Fig. 3. 

Segmentation phase segments structural MR images to obtain the PV 
estimates of GM (PVGM), WM (PVWM) and CSF (PVCSF). Since magneti-
zation of CSF in the perfusion weighted image is zero, PV estimate of the 
CSF is not considered to produce simulated CBF. As the next step, 
thresholding is carried out on the generated PVGM and PVWM to preserve 

Fig. 3. Simulation procedure for generating low quality and high quality ASL CBF images.  

Fig. 4. Block diagram of proposed Deep-ASL ENHANCE block.  
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the voxels of GM and WM with a ratio greater than a predefined 
threshold to produce PGM and PWM. PV estimates of GM and WM are 
masked to remove the voxels with probabilities lower than 0.1 which is 
commonly used in literature [77]. There exist a relationship between 
PGM, PWM and CBF and it is represented using the Eq. (1). 

CBF = PGM × p + PWM × q (1)  

where CBF represents simulated CBF image. The variables p and q 
depend upon the CBF value in the GM and WM regions respectively. 
Across the whole brain, fixed CBF values for normal GM and the WM 
regions were taken as 60ml/100g/min and 20ml/100g/min respectively 
for healthy patients [40,77]. Eq. (1) becomes 

CBF = PGM × 60 + PWM × 20 (2)  

The CBF image thus generated can be represented as the high quality 
ASL image, IHQ. The degrading phase generates low quality CBF map ILQ 
from IHQ by down sampling, gaussian blurring, resizing and noise 
addition operations. Gaussian blurring is applied to incorporate the PV 
effects due to the point spread function [49]. The clinically available 
CBF image is usually affected by Gaussian noise. Hence,it is necessary to 
add gaussian noise to the simulated CBF image at different SNR levels to 
analyze the performance of the algorithm. Generated ILQ and IHQ are fed 
to the Deep-ASL ENHANCE module during the training phase to build a 
deep learning model that can be used to enhance real ASL image. 

The "Deep-ASL ENHANCE" block develops and learns a function that 
creates a high quality ASL image ̂IHQ from a low quality image ILQ. The 
estimated high quality ASL image suffers from PV effects and therefore 
PV correction techniques are to be applied on ̂IHQ to obtain refined GM 
CBF. The detailed representation of the proposed Deep-ASL ENHANCE 
block is illustrated in Fig. 4. 

3.1. Architecture of Deep-ASL ENHANCE block 

The different sub modules of the Deep-ASL ENHANCE block and 
their chronological order in the architecture are finalized based on the 
apriori information from the literature and our experimental analysis 
using the available datasets [75,78]. Low SNR, as well as the effects of 
blurring, result in the loss of edge information between GM and WM 
tissue boundaries in ASL images. This necessitates the design of an ar-
chitecture that improves SNR and reduces blurring effect for the esti-
mation of accurate CBF value. The overall performance of the deep 
learning based architecture depends upon the factors like number and 
nature of layers used, number of epochs, batch size, learning rate, se-
lection of the optimizer and the loss function. In this work, the quality of 
the reconstructed image is ensured by using a multi-loss joint approach. 

Mean Squared error(MSE) is commonly used as the loss function in all 
super resolution tasks, which primarily captures the pixel wise differ-
ence between two images, emphasizing how far the pixels of the target 
image are from the pixels of the predicted/generated image [47]. 
Training deep network using MSE loss function is effective for improving 
SNR of an image, but the reconstructed image still remains blurred and 
CBF quantification will erroneous. The overall quality of the recon-
structed image can be improved by using an effective mechanism to 
identify the missing edge information. Image gradient has been used as a 
measure of image sharpness, and it can be determined by using various 
types of first and second order edge detector operators [23]. Therefore, 
in this proposed architecture, Mean Gradient Error (MGE) [43,78] loss 
function is used to learn sharp edges that are closest to the ground truth. 
Hence, the Deep-ASL ENHANCE block is implemented using two 
reconstruction modules. Low quality ASL image is fed as input to the first 
reconstruction module which generates primary enhanced estimate with 
improved PSNR level ( ÎHQ1). First reconstruction module based on MSE 
loss function eliminates noise in the ASL and the second reconstruction 
module is used to recover high frequency information present in ÎHQ1 

using MGE loss function yielding secondary enhanced estimate (̂IHQ2). 
To obtain the high quality image with high SNR and sharp edges, a 
weighted fusion module is used with learnable weighting coefficients α 
and β to reconstruct final high quality image from ̂IHQ1 and ̂IHQ2. 

The primary and secondary enhanced estimates are generated by 
appropriately mapping low quality and high quality image pairs by 
extracting a set of features from low quality image and transforming 
them into higher dimensional feature space corresponding to a high 
quality image. To achieve these functionalities, feature extraction layer, 
nonlinear mapping layer, and reformation layer are incorporated in the 
reconstruction module as shown in Fig. 5. Basic functions of each of 
these layers are described below. 

3.1.1. Feature extraction layer 
This layer comprises of a convolution layer to extract a set of feature 

maps called as shallow features corresponding to the input image. The 
output of this layer can be represented as 

F0 = W1∗I + B1 (3)  

where W1 and B1 corresponds to filters and biases respectively and ∗
denotes the convolution operation. W1 corresponds to n1 filters of size 
c × f × f where c represents the number of channels in the input image 
and f is the spatial size of the filter. Since this work handles only gray-
scale images, number of channels (c) is set to 1 and the size of the filter is 
set to 3 × 3 for computational simplicity. Here W1 applies n1 convolu-
tions on the input image and generates n1 feature maps that are passed 

Fig. 5. Structure of a Reconstruction Module.  
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to non linear mapping stage. 

3.1.2. Non linear mapping layer 
This layer nonlinearly maps n1 feature dimensional vectors of input 

image into n2 dimensional feature vectors that are conceptually a rep-
resentation of high resolution image used for reconstruction. N number 
of stacked RDB are used in order to learn a nonlinear feature represen-
tation which has a strong influence on the performance of the recon-
struction module. Each RDB contains a combination of k number of 
dense block nodes followed by a convolution layer and skip connection 
for local residual learning as shown in Fig. 6. 

Each of the dense block nodes is constituted by Batch Normalization 
(BN), convolution, and ReLu and the parameter k is decided by experi-
mental analysis. The proposed RDB architecture incorporates BN prior 
to every convolution and ReLU combination, to reduce the internal 
covariance shift problem [30]. BN layer stabilizes the learning process 
and it significantly reduces the number of training epochs. The feature 
map generated at the output of each dense block node depends upon the 
number of filters used in its convolution layer. The feature maps ob-
tained at the mth dense block node of ith RDB block, Fi,m, are the fused 
feature map of all (m − 1) preceding dense block node of ith RDB and its 
corresponding input feature map F(i− 1) which in turn determines the 
growth rate of an RDB. The convolutional layer used after the kth dense 
block node is the output convolutional layer of each RDB and its purpose 
is to equalize the size between feature maps that are given as input to the 
skip connection where it is summed up. 

Let F(i− 1) and Fi be the input and output of ith RDB block, respectively 
each RDB block contains k number of dense block nodes. Fi can be 
mathematically represented as 

Fi = HRDB,i(Fi− 1) (4)  

where HRDB,i denotes the overall operations of the ith RDB block. The 
output of mth dense block node of ith RDB block Fi,m can be represented as 

Fi,m = ReLU
(
Conv

(
BN

(
xi,m

) ) )
(5)  

where xi,m = Concat(Fi− 1,Fi,1,….Fi,m− 1). Now the output of BN becomes 

OmBN = BN(xi,m) = BN(Concat(Fi− 1,Fi,1,….Fi,m− 1)) (6)  

By convolving OmBN with set of f filters Wm having bias values Bm gen-
erates the output of mth convolutional layer in mth block, 

OmCONV = Wm∗OmBN + Bm (7)  

After applying ReLU activation function on OmCONV , we get Fi,m as 

F(i,m) = max(0,OmCONV) (8)  

By integrating all the functions, the overall output Fi,m can be repre-
sented as 

Fi,m = Max(0, (Wi,m∗(BN(Concat(Fi− 1,Fi,1,….Fi,m− 1))) + Bi,m)) (9) 

The last dense block node of RDB is connected to a convolution layer 
and gets the output Fi,C as 

Fi,C = Wi,C∗Yi,l (10)  

where Yi,l = concat(Fi− 1,Fi,1,…,Fi,k). After Local Residual Learning, the 
final output of ith RDB block is depicted as 

Fi = Fi,C + Fi− 1 (11)  

3.1.3. Reformation layer 
The feature maps are propagated through N consecutive RDB blocks 

to arrive at FN which is fed to a separate convolutional layer to recon-
struct the high resolution image estimate ̂IHQx which is mathematically 
represented as 

Î HQx = W2∗FN + B2 (12)  

where W2 represents a filter of size f × f (spatial filter size) and B2 
represents its bias values. 

3.1.4. Multi-loss joint strategy 
It is necessary to analyze the cascading effect of multiple recon-

struction modules within the Deep-ASL ENHANCE block. MSE loss 
function of the first reconstruction module minimizes the loss between 
reconstructed image ̂IHQ1 and ground truth high quality image IHQ where 
ÎHQ1 is represented as 

Î HQ1 = Fa(ILQ; θ) (13)  

where θ denote the overall parameters of the deep learning network. 
Given, a set of low quality and high quality image pairs (ILQ and IHQ), the 
MSE loss function is defined as 

L1MSE(θ) =
1
n

∑n

i=1
‖Fa(ILQ; θ) − IHQ‖

2 (14)  

where n represents the total number of training samples. The MGE loss 
function of the second reconstruction module is designed by comparing 
various gradient computation methods [23]. The sobel operator is found 
to be most suitable for our work because of improved computational 
time efficiency and noise reduction characteristics [23]. Gradient of an 
image is calculated by convolving the image with corresponding filter 
mask in the X and Y directions. In this method, horizontal (Hsobel) and 
vertical mask (Vsobel) considered are, 

Hsobel =

⎛

⎝
− 1 − 2 − 1
0 0 0
1 2 1

⎞

⎠ and Vsobel =

⎛

⎝
− 1 0 1
− 2 0 2
− 1 0 1

⎞

⎠

Fig. 6. Structure of a Residual Dense Block.  
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Then magnitude of a gradient operator at each pixel location is calcu-
lated by 

G(i, j) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

G2
x(i, j) + G2

y(i, j)
√

(15)  

where Gx(i, j) and Gy(i, j) denotes the gradient in the X and Y directions 
respectively. Gx(i, j) and Gy(i, j) can be implemented by convolution of 
an image I with horizontal filter mask (Hsobel) and vertical mask (Vsobel) 
respectively as follows 

Gx = I∗Hsobel (16)  

Gy = I∗Vsobel (17) 

High SNR image obtained as the output of the first reconstruction 
module, ̂IHQ1, is fed as input to second reconstruction module to sharpen 
the edge features using MGE loss function which is defined as 

L2MGE(θ) =
1
n
∑n

i=1

⃦
⃦Ĝ

Î HQ2
− GHQ

⃦
⃦2

=
1
n
∑n

i=1
‖Fb(Î HQ1; θ) − GHQ‖

2

(18) 

The estimated images ̂IHQ1 and ̂IHQ2 are weighted by the factors α and 
β respectively and fed to the weighted fusion module to improve the 
overall quality of images in terms of both SNR and edge information. 
The quality of the output image IHQ can be improved by the appropriate 
tuning of parameters α β and β by weighted fusion module with MSE loss 
function (L3MSE), which can be visualized as a simple perceptron with 
weighting parameters α and β. The overall output IHQ and L3MSE is rep-
resented as 

Î HQ = α⋅Î HQ1 + β⋅ Î HQ2 (19)  

L3MSE(θ) =
1
n

∑n

i=1
‖Fc(Î HQ; θ) − IHQ‖

2 (20) 

Final enhanced image is obtained by deploying a multi-loss joint 
strategy [78] during training process in which the overall loss depends 
on the individual modules outputs, ÎHQ1, ÎHQ2 and ÎHQ which in turn 
depend on their respective loss functions L1MSE, L2MGE and L3MSE. Then 
the overall loss can be expressed as 

OverallLoss = λ1 × L1MSE + λ2 × L2MGE + λ3 × L3MSE (21)  

where λ1, λ2 and λ3 are the corresponding weighting factors which af-
fects the performance of the network. Fixing the value of these 

Fig. 7. Overall architecture of proposed Deep-ASL ENHANCE block.  

Fig. 8. Flow diagram of partial volume correction method.  
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weighting factors is the challenging problem associated with multi loss 
joint strategy. 

By experimentally analyzing the quality metrics in terms of Root 
Mean Squared Error (RMSE), Peak Signal to Noise Ratio (PSNR) and 
Structural Similarity Index (SSIM), the number of RDBs is finalized as 
two for the non linear mapping layer. The overall architecture of the 
DEEP ASL-ENHANCE block is as shown in Fig. 7. 

3.2. Deep-ASL ENHANCE - a preprocessing step to PV correction 

The deep learning based enhancement steps described so far im-
proves ASL image quality in terms of blurring effects and noise. But it is 
unable to accurately quantify GM CBF due to PV effects. For the accurate 
estimation of voxel wise GM CBF, which is more useful in clinical 
diagnosis, PV correction is mandatory. The deep-ASL enhancement al-
gorithm is employed as a preprocessing step to the LR algorithm, which 
can lead to a promising approach for improving the accuracy of CBF 
quantification compared to the use of LR algorithm alone, the most 
standard algorithm used for PV correction. Fig. 8 illustrates the pro-
cedure followed for PV correction. The high quality CBF map is down 
sampled to half size resolution which mimics the simulated ASL image 
and is fed as the input to the LR algorithm along with other parameters 
such as brain mask, kernel size and down sampled PV estimates of GM 
and WM. A Deep-ASL ENHANCE block is incorporated prior to LR to 
compare its effects on GM CBF quantification. The details of this vali-
dation are discussed in Section 4.5. 

4. Discussion of experimental results and analysis 

Deep learning based ASL image enhancement method is imple-
mented and its performance is evaluated using simulated data, and the 
model developed is successfully applied to clinical ASL data. The 
simulated data is generated using the technique mentioned in Fig. 3 
because there isn’t enough clinical data to construct a deep learning- 
based architecture. 

4.1. ASL dataset simulation 

The ASL image is simulated using structural images from the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI-2) CN research group 
database (http://adni.loni.usc.edu) with age ranges from 60− 85. 
Structural images in ADNI2 were acquired using the Siemens Verio 

Scanner with 3D MPRAGE T1-weighted sequence. The acquisition pa-
rameters were used as Field of View (FOV) = 256 × 240 mm2, TR/TE =
2300/3ms, voxel size = 1 × 1 × 1.2 mm3, slice thickness = 1.2 mm, flip 
angle = 9 ∘ and bandwidth = 240 Hz/px. 

Brain tissue extraction, segmentation, thresholding, generation of 
high quality CBF map and degrading operations are performed on the 
structural data to generate low quality ASL images. Brain tissue is 
extracted from high-resolution T1-weighted structural images to remove 
the non-brain components using the FSL tool BET [32]. The segmenta-
tion phase produces PV estimates for GM, WM and CSF from the input 
images using the FSL tool FAST [76]. In the thresholding process, PV 
estimates of GM and WM with voxel intensity less than 10 % were 
excluded from the analysis, by replacing values less than 0.1 by 0 in the 
relevant PV estimates. Then high resolution CBF map is created by 
incorporating partial volume effects using Eq. (1). Down sampling 
operation is carried out to transform the ASL images to half the size. 
Gaussian blurring is added to the down sampled image with Full Width 
at Half Maximum (FWHM) value 1mm to include the effects of PSF. After 
equalizing the size of the low and high quality images by resizing pro-
cess, noise corresponding to different SNR levels as 1015 and 20 is 
applied. 

As reported [6,70], ASL raw images are affected by rician noise 
where as perfusion weighted images and CBF map are affected by 
Gaussian noise. Hence the Gaussian noise with a standard deviation 
corresponding to respective SNR levels were added, according to 

SD =
(max(ΔM(t)))

SNR
(22)  

Here, ΔM(t) refers to the ASL difference signal in the kinetic curve model 
[11] created by setting GM CBF (f) = 60 mL/100/min, Δt = 0.7s and t =

1.8. All other parameters of the kinetic model are specified as standard 
values [77]. Fig. 9 depicts the outputs of each phase in the simulation 
process. 

4.2. Clinical data 

Deep-ASL ENHNACE method was also evaluated with representative 
images of clinical cases acquired from 3 T GE Discovery 750 W scanner 
(GE Healthcare, Milwaukee, WI, USA) using a 3D PCASL technique after 
the approval of Institutional Ethics Committee (IEC). Image acquisition 
was performed with TR/TE = 4854/10.7ms, PLD = 2025 ms for adults 
and 1525 ms for children, FOV = 240 mm, number of excitations (NEX) 

Fig. 9. Results for each stage in the ASL simulation process.  
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= 3, spiral readout 8 arms × 512 samples and 4 arms × 512 samples, 
slice thickness = 4 mm and bandwidth = 62.5 kHz. 

4.3. Data preparation and model training 

The experiments were performed on a simulated ASL dataset of 40 
subjects. Data of 10 subjects were used for testing purpose and 20 % of 
the remaining dataset were used as validation samples during training. 
For each subject, 151 axial planes from slice 30–180 which contains 
maximum information have been selected from a 3D simulated ASL 
image. Noise effects are introduced to the dataset by incorporating the 
noise with three distinct SNR values resulting in the generation of three 
distinct noise images corresponding to each slice. The total number of 
2D ASL images constructed for subsequent experiments is 40× 151× 3, 
which is 18120. 

Proposed deep learning networks are implemented using keras 
platform with tensorflow as the back-end. All the experiments were 
conducted on a PC with Intel(R) Core(TM) i7− 5820k CPU 3.30 GHz and 
an Nvidia GeForce 980 Ti GPU. 

Performance of the proposed method can be influenced by a number 
of hyper parameters such as number of convolution layers and size of 
filters in convolutional layer, number of residual blocks in nonlinear 
mapping module, number of epochs for training, selection of batch size 
and optimizer, fixing up of learning rate and the selection of suitable 
edge detector operator for MGE loss function. The model is build by the 
fine tuning of each parameter in accordance with a trial and error pro-
cess. The performance of the proposed system is evaluated using 
different quantitative metrics such as PSNR, SSIM, and RMSE values. 

4.4. Determination of various parameters in the proposed architecture 

Feature extraction is generally performed using convolution layers 
followed by a ReLu activation function. The number of convolutional 
layers required and the need of ReLu activation function is influenced by 
the application and the dataset under study. As the number of 

convolution layer increases, computational time complexity propor-
tionally increases and which may not always guarantee the improve-
ment in overall accuracy of the output. Hence the number of 
convolutional layers needed is determined by experimenting with 
increasing the number of convolutional layers and assessing the output 
quality using various metrics by providing input with varying SNR 
levels, as shown in Table 1. 

It is observed that all these metrics give better results as the number 
of layer and noise level decreases. Hence, the number of convolutional 
layers in the final model is fixed to one. The effect of incorporating ReLu 
function between the convolution layer and the nonlinear mapping layer 
was also studied and the observations are given in Table 2. 

The quality of the output obtained without considering ReLu func-
tion yields better results due to the clipping effect of ReLu function. 
There is considerable improvement in the metric SSIM compared to the 
other two measures RMSE and PSNR. The selection of the number of 
convolution layer also depends upon the number of filters and the size of 
the filters used. Therefore, the study is also extended to see the impact of 
various filter count in convolution layer, by fixing the filter size as 3× 3, 
on the quality of the image. Table 3 shows the effects of the filter count 
on convolution layer by fixing it to 16, 32, 64 and 128 and it has been 
found that the quality of the output is the best for filter count 32 at 
different SNR levels. 

Output images of the convolutional layer by fixing the layer count as 
1 and filter count as 32, with and without ReLU in the feature extraction 
layer is shown in Fig. 10. 

Following the feature extraction layer, a non-linear mapping layer is 
included using RDB as the basic building block. In many architectures, 
the nonlinear mapping effect is obtained by considering various network 
structures such as sequence of CNNs, RB, DB etc [16,33,34,41]. The 
result obtained for each of the approach varies depending upon the 
nature of the input and the overall architecture used. Hence, predefined 
methods cannot be adopted to any architecture for improving the output 
quality without proper analysis of the effects of different network 
structures independently or as a combination of these networks. To 
identify the independent behavior of various networks, the experiments 
were conducted using a simulated dataset with stacked CNN, RB, DB, 
RDB network layers for varying layer size. Number of layers considered 
for each network architecture is 3, 6, 9 and 12. Detailed observation of 
this experiment is given in Table 4. 

It can be noticed that two RDB with 6 layers yields better perfor-
mance. Therefore, it is identified that two RDB with 6 layers may be the 
most appropriate building block for constructing our architecture. But 
the overall accuracy of the entire architecture by considering RDB as the 
basic block cannot be predicted without considering the effects of other 
blocks. The experiments were also conducted using RB, DB and RDB 

Table 1 
Comparison of mean RMSE, PSNR and SSIM score obtained for different number of convolutional layers in feature extraction layer with different SNR levels.  

Number of CNN layers in Feature Extraction Layer 

1 2 3 

SNR RMSE PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM 
20 0.0803 23.1494 0.9032 0.0831 23.0702 0.731 0.0891 22.94 0.698 
15 0.0873 22.4144 0.8187 0.0869 22.0013 0.719 0.0901 21.786 0.665 
10 0.0985 21.3694 0.5386 0.0971 21.1915 0.511 0.934 20.568 0.508  

Table 2 
Comparison of mean RMSE, PSNR, and SSIM scores obtained in the feature 
extraction layer with and without ReLu at various SNR levels.  

Choice of ReLu function  

Without ReLu With ReLu 

SNR RMSE PSNR SSIM RMSE PSNR SSIM 
20 0.0803 23.1494 0.9032 0.0831 23.0702 0.731 
15 0.0873 22.4144 0.8187 0.0869 22.0013 0.719 
10 0.0985 21.3694 0.5386 0.0971 21.1915 0.511  

Table 3 
Effects of different number of filters on the convolution layer of the Feature Extraction layer at different levels of SNR.   

Number of filters in feature extraction layer   

16   32   64   128  

SNR RMSE PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM 
20 0.856 21.98 0.709 0.0803 23.1494 0.9032 0.0804 23.1469 0.6533 0.0815 23.0061 0.4909 
15 0.0899 20.67 0.656 0.0873 22.4144 0.8187 0.0884 22.2018 0.4509 0.0872 22.1579 0.4069 
10 0.092 20.87 0.467 0.0985 21.3694 0.5386 0.1234 21.1856 0.4046 0.0976 21.1423 0.3549  
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blocks as the basic building block of the nonlinear mapping layer in the 
proposed architecture for arriving at the basic building block to be used. 
The results obtained are tabulated as Table 5. Proposed method with 
RDB in nonlinear mapping layer yields better performance particularly 
for SSIM metric compared to RMSE and PSNR. 

Experiments were also conducted to study the effects of varying the 
number of RDB’s inside non linear mapping module with varying noise 
level and the result is given in Table 6. It is interesting to observe that the 

performance is better for RDB block count 2. The graphical represen-
tations of RMSE, PSNR, and SSIM metrics for various model configura-
tions are shown in Fig. 11. 

In some of the studies reported [19,41,74,75], it has been found that 
incorporating BN, deteriorates the efficiency of the architecture. Hence 
it was necessary for us to study the effect of BN in the RDB and the 
network was trained with and without BN to verify the performance of 
the model on simulated data. It is found that BN improves the network 
accuracy, particularly in terms of SSIM as shown in Table 7. 

Based on the above mentioned performance analysis, it was decided 
to include two RDB blocks in the nonlinear mapping module where each 
block consists of six layers of sub blocks of BN, Conv and ReLU layer. 
Once the nonlinear mapping layer is fixed, the next major task was to 
decide the number of reconstruction module and the type of the loss 
function to be used in each module to improve the overall performance. 
In recent deep learning based super resolution literature [43], it is 
mentioned that MSE or combination of MSE and MGE can be used as loss 
function. Hence the experiment was conducted with single reconstruc-
tion module and then with two reconstruction modules. From the 
experimental analysis with a single reconstruction module with MSE, it 
was identified that for the simulated ASL images, output quality de-
grades due to blurring effects and also it fails to give edge information in 
the input. When a single reconstruction module with MGE is considered, 
the output obtained provides edge information alone and removes other 
relevant information. These observations are represented in Table 8 and 
the results are shown in Fig. 12. 

Based on this observation, it was decided to use a reconstruction 
module with MSE loss function as the first unit, where the output suffers 
from loss of edge information. In the case of ASL image, since edge in-
formation is significant, some mechanism should be adopted to sharpen 
the edge details. Therefore the second reconstruction module with MGE 
is included following the reconstruction module with MSE loss function. 
The most challenging task here was to fix the type of edge detector 
operator used for gradient calculation. To fix this, analysis has been 
made with both first order edge detector operators such as Prewitt, Sobel 
and second order detector Laplacian. The results of this analysis are 
shown in Table 9. It is observed that the gradient operator using Sobel 
yields the best result and hence the operator is finalized as Sobel. 

To get all the relevant information, first and the second reconstruc-
tion modules are combined with a weighted fusion module which uses 
MSE loss function. The associated parameters α and β were learned 
during the training process. The overall efficiency of the model is 
determined by the weighting factor by which the loss functions are 

Fig. 10. Visual representation of the output of the convolutional layer with layer count = 1, filter count = 32, with and without ReLU in feature extraction layer.  

Table 4 
Mean RMSE, PSNR, SSIM scores obtained using simulated dataset for various 
model configurations.  

Models RMSE PSNR SSIM 

CNN_3 0.0876 17.4479 0.6298 
CNN_6 0.0879 18.2861 0.6426 
CNN_9 0.09 16.989 0.6219 
CNN_12 0.0912 16.7831 0.6012 
RB_3 0.08364 18.786 0.6812 
RB_6 0.08345 19.4913 0.7086 
RB_9 0.08438 19.298 0.6989 
RB_12 0.08478 19.1297 0.6698 
DB_3 0.0827 19.5366 0.7171 
DB_6 0.0824 20.7625 0.7369 
DB_9 0.0828 19.786 0.7348 
DB_12 0.0831 19.5012 0.7318 
RDB_3 0.0821 20.968 0.7354 
RDB_6 0.0811 21.997 0.7588 
RDB_9 0.0824 20.989 0.7356 
RDB_12 0.0828 20.082 0.7239 
2_RDBs_3 0.0819 22.5608 0.7687 
2_RDBs_6 0.0818 22.6539 0.79867 
2_RDBs_9 0.0823 21.789 0.7821 
2_RDBs_12 0.0826 21.8546 0.7756  

Table 5 
Effects of RB, DB and RDB in nonlinear mapping module in terms of mean RMSE, 
PSNR and SSIM scores.  

Model RMSE PSNR SSIM 

Multiloss joint strategy with RB in nonlinear 
mapping module 

0.0811 22.82 0.8262 

Multiloss joint strategy with DB in nonlinear 
mapping module 

0.0809 22.89 0.8533 

Multiloss joint strategy with RDB in nonlinear 
mapping module 

0.0803 23.1494 0.9032  
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combined. Fine tuning of the weighting factors λ1, λ2 and λ3 was done to 
improve the overall quality of the output and their values are experi-
mentally determined as 3, 0.1, 3 respectively. 

In addition to the architecture dependent parameters of the deep 
learning networks, general parameters such as learning rate, number of 
epochs, batch size and optimizers selected for training are also critical 
for analyzing the performance of the system. These parameters are fine 
tuned by assigning random values until the results converge. Deep 

learning based architecture commonly uses Adaptive Moment Estima-
tion (ADAM) [36], Stochastic Gradient Descent (SGD) [9] and RMSprop 
[27] as the optimizer which is highly dependent on the nature of the 
data. Hence, here the experiment is conducted using the optimizers such 
as ADAM, SGD, RMSprop with varying SNR levels and a comparative 
evaluation is given in Table 10. 

For our dataset, ADAM optimizer exhibits better results compared to 
other two. The Learning rate and other parameters were fixed by 
assigning initial values identified from the literature [24,36] and the 

Table 6 
Mean RMSE, PSNR, SSIM scores obtained by varying the number of RDB in nonlinear mapping module.  

Number of RDB unit in nonlinear mapping module  

1   2   3   6   7  

SNR RMSE PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM 
20 0.0854 23.0378 0.8775 0.0803 23.1494 0.9032 0.0793 22.8276 0.7256 0.1365 18.5315 0.8594 0.1357 18.3824 0.8593 
15 0.0904 22.8569 0.6605 0.0873 22.4144 0.8187 0.0864 22.1696 0.7232 0.1456 18.1118 0.8197 0.1445 17.8386 0.8291 
10 0.0991 22.4096 0.4508 0.0985 21.3694 0.5386 0.0969 21.2553 0.6247 0.1574 17.5377 0.7742 0.1603 17.2472 0.778  

Fig. 11. Graphical representations of RMSE, PSNR, and SSIM scores for various model configurations.  

Table 7 
Comparison of mean RMSE, PSNR and SSIM score obtained with and without BN 
in RDB block.   

Nature of RDB  

Without BN With BN 

SNR RMSE PSNR SSIM RMSE PSNR SSIM 
20 0.0793 23.0407 0.8392 0.0803 23.1494 0.9032 
15 0.0869 22.035 0.7725 0.0873 22.4144 0.8187 
10 0.0958 21.1985 0.50988 0.0985 21.3694 0.5386  

Table 8 
Mean RMSE, PSNR, SSIM scores obtained with different reconstruction module 
strategy.  

Reconstruction Module Strategy RMSE PSNR SSIM 

Single reconstruction module with MSE only 0.0778 22.6329 0.7066 
Single reconstruction module with MGE only 0.7202 13.4864 0.3706 
Proposed Method (Two reconstruction modules 

with multi-loss joint strategy) 
0.0803 23.1494 0.9032  
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results were analyzed by assigning values greater and less than the 
default values. The initial values assigned for learning rate, batch size, 
epoch are 0.001, 32 and 100 respectively. Detailed analysis of the ex-
periments is given in Tables 11–13. The proposed method has been 
found to offer the best results with a learning rate equal to 0.0003, a 
batch size equal to 32 and an epoch equal to 100. 

The learned model is validated using simulated test data and Fig. 13 

shows the samples of reference images, low quality images with 
different SNR and respective reconstructed images using the proposed 
model. The validated model is used to assess its suitability for clinical 
applications and investigations were conducted using clinical data from 
representative clinical images. Fig.14 depicts the samples of low quality 
clinical ASL images along with the processed images. Since high quality 
clinical ASL images are not available for comparing and validating our 
results, a visual quality assessment strategy [17] is adopted and the 
reliability of our model is expressed in terms of Visual Quality Score 
(VQS). 

The processed clinical images were assessed independently and 
simultaneously by two experienced neuro radiologists in the clinical 
PCASL interpretation, blinding the medical history of the patients. The 
observers were asked to analyze the quality of ASL perfusion images 
based on the different quality parameters such as contrast component, 
noise effect and edge clarity. For each image, contrast component of GM 
and GM- WM differentiation were performed. A list of quality parame-

Fig. 12. Results of different reconstruction modules: (a) Input image (b) Results obtained using single reconstruction module using MSE loss function (c) Results 
obtained using single reconstruction module using MGE loss function (d) Results obtained using proposed method (Two reconstruction modules with multi loss 
joint strategy). 

Table 9 
Mean RMSE, PSNR, SSIM scores obtained with different edge detector operators 
on second reconstruction module.  

Edge detection operator RMSE PSNR SSIM 

Prewitt 0.0797 22.7303 0.8684 
Sobel 0.0803 23.1494 0.9032 
Positive Laplacian 0.0869 22.297 0.3757 
Negative Laplacian 0.0867 22.8133 0.4112  

Table 10 
Mean RMSE, PSNR, SSIM scores obtained for optimizers Adam, SGD and RMSProp in the proposed system.   

Type of Optimizer  

Adam   SGD   RMSprop  

SNR RMSE PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM 
20 0.0803 23.1494 0.9032 0.1461 18.4866 0.8304 0.1382 18.5947 0.8545 
15 0.0873 22.4144 0.8187 0.1601 17.9365 0.7729 0.1484 18.0532 0.8138 
10 0.0985 21.3694 0.5386 0.1793 17.4192 0.7096 0.166 17.2648 0.7579  

Table 11 
Mean RMSE, PSNR, SSIM scores obtained with different learning rate in the proposed system.   

Learning rate   

0.0001   0.0003   0.0005   0.001   0.01  

SNR RMSE PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM 
20 0.0817 22.7159 0.6761 0.0803 23.1494 0.9032 0.0806 22.2465 0.674 0.0975 21.94 0.4462 0.487 9.5735 − 0.09 
15 0.0888 21.3422 0.7845 0.0873 22.4144 0.8187 0.0891 21.9337 0.7996 0.1105 20.0394 0.3424 0.4899 9.483 − 0.09 
10 0.0996 20.5755 0.4325 0.0985 21.3694 0.5386 0.0989 20.3302 0.4784 0.1421 19.45 0.2821 0.4913 9.414 − 0.08  

Table 12 
Mean RMSE, PSNR, SSIM scores obtained with different epochs in the proposed system.   

Number of Epochs   

50   100   200   300   500  

SNR RMSE PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM 
20 0.0976 18.5678 0.3987 0.0803 23.1494 0.9032 0.0805 22.9868 0.8723 0.0803 22.0374 0.7599 0.0822 21.6177 0.4591 
15 0.996 17.5671 0.3128 0.0873 22.4144 0.8187 0.0883 22.3181 0.5521 0.0883 22.2477 0.4733 0.0886 21.1303 0.394 
10 0.1458 16.5679 0.2986 0.0985 21.3694 0.5386 0.0986 21.4951 0.3839 0.0988 21.1864 0.3719 0.0993 20.6288 0.2855  
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Table 13 
Mean RMSE, PSNR, SSIM metrics results on simulated dataset with different batch size for training proposed system.   

Batch Size   

16   32   64   128  

SNR RMSE PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM 
20 0.0802 22.0201 0.5988 0.0803 23.1494 0.9032 0.0824 22.6864 0.4898 0.0816 22.2206 0.4118 
15 0.0866 21.1425 0.4161 0.0873 22.4144 0.8187 0.0894 21.1946 0.3532 0.0899 21.6996 0.3613 
10 0.0953 20.8399 0.3512 0.0985 21.3694 0.5386 0.1005 20.6884 0.2916 0.1038 20.6455 0.3071  

Fig. 13. Results of proposed model on simulated images of different subjects.  

Fig. 14. Results of clinical data for several subjects at different slices using the proposed model.  
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ters and VQS are shown in Table 14. The VQS for each category ranges 
from 0 to 2, with a high score indicating that the processed image has 
improvements over the clinical images. The proposed approach was 
used to process 288 slices perfusion images at random. Out of the 288 
slices, 72 slices were generated, utilizing spiral readout 4 arms × 512 
samples, resulting in a very lowresolution image with poor 
interpretability. 

Fig. 15 represents the graphical analysis of the radiological score by 
two radiologists. An average score of 1.6, 1.7, 1.6, and 1.8 is obtained for 
different quality criteria. It has been observed that the proposed algo-
rithm gives more promising results in terms of VQS. Inter observer 
variation of two radiologists was evaluated using Cohen’s kappa (κ) 
coefficient by constructing cross tab. The κ value obtained for each of the 
grading criteria is consolidated in Table 15 with its approximate sig-
nificance p -value [62]. Out of various κ value interpretation methods 
available [8,37], this work uses the guidelines suggested by Landis and 
Koch [37]. According to this approach, the range of the κ between 0.41 
and 0.60 suggests moderate agreement, 0.61 to 0.80 shows good 
agreement, and 0.81–1 indicates very good agreement. Since the κ 
values arrived at corresponding to all the quality criteria is greater than 
0.629, this can be interpreted as a favourable result. 

4.5. Analysis on the effect of proposed method on PV correction 
techniques on simulated ASL MR Images 

Deep-ASL ENHANCE algorithm is used as a preprocessing step in PV 
Correction. Comparing its impact on LR with and without the Deep-ASL 
ENHANCE algorithm is critical. Experiments were conducted as illus-
trated in Fig. 8 for comparison using simulated ASL images. Accuracy of 
PV Correction using LR is typically influenced by two factors, the effects 
of noise in input ASL data and its resolution mismatch due to the un-
matched PSF between structural and ASL images [49]. These effects are 
analyzed experimentally using RMSE as a performance measure. Since 
this is a simulation experiment, the true value of GM CBF for RMSE 
analysis is set to 60 as GM value of 60 is used for the generation of ASL 
images. 

4.5.1. Effect of noise on ASL data in PV Correction with and without Deep- 
ASL ENHANCE 

Experiments were conducted by varying SNR levels on input ASL 
data as 5, 10, 15, 20 and infinity for analyzing the effect of incorporating 
Deep-ASL ENHANCE block for PV Correction. PV Correction using the 
LR method, DEEP-ASL ENHANCE method and combined Deep-ASL 
ENHANCE and LR was investigated. From Table 16, it can be seen 
that performance of LR alone is better compared to Deep-ASL ENHANCE 
method. Deep-ASL ENHANCE approach enhances image quality more 
effectively (Table 16), but voxelwise correction is not performed. As a 
consequence, the RMSE value obtained is substantially higher than that 
of LR. The RMSE is significantly reduced when Deep-ASL ENHANCE is 
introduced as a preprocessing step prior to LR, particularly for lower 
SNR values which is realistic in clinical point of view. 

4.5.2. Effects of blurring on PV correction with and without Deep-ASL 
ENHANCE 

To study this effect, noise free simulated ASL data is used and the 
blurring effect is incorporated with a 3D Gaussian blurring kernel cor-

Table 14 
Visual Quality Score (VQS) for different quality parameters and grading criteria.  

Visual Quality Parameters Visual Quality 
Score (VQS) 

Grading Criteria Subtotal 

1. Contrast Component 2 Clearly Visible 
contrast  

1.1 Grey Matter 1 Unclear contrast 0–4 
1.2 Grey Matter-White Matter 

Differentiation 
0 No visible 

contrast   

2 Reduced  
2. Change in Noise Effect 1 No change 0–2  

0 Increased   

2 Increased  
3. Increase in Edge Clarity 1 No change 0–2  

0 Blurred  

Grand Total   0–8  

Fig. 15. Visual Quality Score of two radiologists against different visual quality parameters.  

Table 15 
Kappa Coefficient (κ) with p-value of different visual quality parameters.  

Visual Quality Parameter Kappa Coefficient with p-value 

Grey matter Contrast 1 (p < 0.001) 
Grey matter white matter differentiation 0.6923 (p = 0.008) 
Reduction in noise effects 0.7407 (p = 0.008) 
Increase in edge clarity 1 (p = 0.005)  

Table 16 
Mean RMSE value between reference GM CBF and the images obtained after LR 
algorithm, Deep-ASL ENHANCE algorithm and combined Deep-ASL ENHANCE 
and LR algorithm by varying different SNR levels of ASL simulated data.  

Method SNR =
inf 

SNR =
20 

SNR =
15 

SNR =
10 

SNR =
5 

LR 0.0650 0.0667 0.0674 0.0684 0.0724 
Deep-ASL ENHANCE 0.0731 0.0735 0.0737 0.0744 0.0786 
LR after Deep-ASL 

ENHANCE 
0.0648 0.0654 0.0666 0.676 0.0687  

Table 17 
Mean RMSE value between reference GM CBF and the images obtained after LR 
algorithm, Deep-ASL ENHANCE algorithm and combined Deep-ASL ENHANCE 
and LR algorithm by varying different blurring levels(FWHM) on ASL simulated 
data with SNR = inf.  

Method FWHM 
= 1 

FWHM =
1.5 

FWHM 
= 3 

FWHM =
4.5 

FWHM 
= 6 

LR 0.0656 0.0700 0.0804 0.0849 0.0850 
Deep-ASL 

ENHANCE 
0.0719 0.0740 0.0900 0.0949 0.0939 

LR after Deep- 
ASL ENHANCE 

0.0649 0.0662 0.0773 0.0826 0.0829  
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responding to a collection of standard deviation value σ according to the 
Eq. (23) with different FWHM values 

σ =
FWHM

̅̅̅̅̅̅̅̅̅
8ln2

√ (23) 

FWHM values in the range 1–6 were chosen from the literature [77] 
to account for low and high blurring effects. The results corresponding to 
a subset of values falling in this range are presented in Table 17. Using 
the above set data, accuracy of PV correction using LR alone, Deep-ASL 
ENHANCE method, and combined Deep-ASL ENHANCE and LR were 
also investigated and shown in Table 17. 

Similar observations are also made in the case of combined Deep-ASL 
ENHANCE and LR method for any degree of blurring. Comparing 
Table 16 and Table 17, an increased RMSE value can be noted in the case 
of high blurring effects. This emphasizes the fact that blurring phe-
nomena affect PV correction accuracy in a more significant way than 
that of noise. Table 18 shows the combined effect of blurring and noise, 
in a realistic manner as seen in clinical cases, for different levels of SNR 
and FWHM values. When proposed method is used for preprocessing 
steps in LR algorithm, significant decrease in RMSE value is arrived at. 

Deep-ASL ENHANCE, as demonstrated in the proposed work, is a 
potential strategy for improving the quality of ASL images, which re-
duces quantification error in CBF values. It is also observed that data 
acquired using spiral readout 4 arms × 512 samples did not provide 
satisfactory VQS. This is due to the poor resolution and interpretability 
of the input, clinical images, necessitating further investigations. 

5. Conclusion 

The quality of ASL image is enhanced by the proposed Deep-ASL 
ENHANCE algorithm that uses a multi-loss joint strategy with the re-
sidual dense block as the basic building block. This technique addresses 
the problems encountered in accurately quantifying the CBF value, 
which is hampered by low SNR and low resolution, when used for 
clinical diagnosis. ASL images simulated from structural data of ADNI2 
were used to train the deep learning model, since the available clinical 
images will not suffice the huge data requirements. The trained model 
gave most promising results on simulated as well as clinical ASL test 
datasets and these results are validated in terms of evaluation matrices. 
The average scores corresponding to the simulated datasets for SNR =
20 are 0.0803, 23.1494, and 0.9032 for RMSE, PSNR, and SSIM 
respectively. The performance of the trained model on clinical data is 
evaluated by two independent radiologists. The visual quality scores 
thus arrived at, gave an average score of 1.6, 1.7, 1.6 and 1.8 for 
different quality grading criteria such as grey matter contrast, grey 
matter-white matter differentiation, reduction in noise effects, and in-
crease in edge clarity. The inter observer variability of the radiologists is 
assessed using Cohen’s kappa coefficient, which yielded κ values as 1, 

0.6923, 0.7407 and 1 for the above mentioned quality grading criteria, 
indicating favourable results. It is also observed that due to very poor 
resolution and interpretability of the input clinical images, data ob-
tained from subjects using spiral readout 4 arms × 512 samples couldn’t 
give acceptable results, which will be addressed in the future. A deep 
learning model trained with multiscale resolution may provide 
improved results for these types of images. Since voxel wise GM CBF is 
important in most of the clinical diagnosis, partial volume correction 
using the LR algorithm is performed on the enhanced simulated image 
obtained through Deep-ASL ENHANCE algorithm. The impact of 
different noise levels and blurring effects of PVC has been investigated 
and it is found that Deep-ASL ENHANCE, as a preprocessing step to LR 
algorithm, reduces the CBF quantification error in terms of RMSE values. 
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FWHM Method SNR = inf SNR = 20 SNR = 15 SNR = 10 SNR = 5 

1 
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